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Chapter 1 

Abstract 

The research conducted with AFOSR support under Grant # AF/F49620- 
03-1-0120 aimed at developing algorithms and theory for reliable re- 
trieval of information hidden in noisy measurements. 

A wide range of technologies, from medical diagnostics to reconnais- 
sance and targeting, rely critically on the quality of available data. Our 
ability to control is often only hindered by our ability to see. The data, 
whether collected using ultrasound transducers, radar, or a distributed 
array of sensors have one thing in common, the useful information is 
often swamped in noise. The research focused on developing a next 
generation of spectral analysis tools and resolution standards that pro- 
vide the maximal amount of useful information as well as quantitative 
assessment of the remaining uncertainty. 

The research effort has generated algorithms that have a built-in 
ability to focus in on particular futures of recorded signals. The project 
has undergone several phases already. Early work, in collaboration with 
Professors C.I. Byrnes and A. Lindquist, produced a method and appa- 
ratus for a Tunable High-REsolution spectral Estimator (U.S. patent 
No. 6,400,310) nicknamed THREE. A very substantial improvement 
in resolution over prior state-of-the art was documented via theoretical 
as well as experimental studies. A number of specialized algorithms 
spawned from this and have since been tested on synthetic aperture 
radar imaging using MSTAR data and on ultrasound imaging in col- 
laboration with Professor E. Ebbini of the University of Minnesota. 

Recently, in collaboration with Dr. Dan Herrick (AFRL/DESA), 
high resolution methods are being tailored to, disturbance isolation of 
a targeting system (e.g., laser) using input from a distributed array of 
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sensors. High resolution methods can be used for sifting efficiently 
through huge amounts of data so as to identify sources and direc- 
tionality of disturbances. Thereby it is anticipated that the research 
completed under the grant will further contribute to critical targeting 
technologies. 

Besides the development of algorithms, the research team has in- 
vested on the development of mathematical tools and standards for 
quantifying resolution and reliability in spectral analysis and in esti- 
mation. These are expected to guide the tuning of control and mea- 
surement strategies in the near future. 
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Chapter 2 

Summary of Research 
Contributions 

The research conducted under the present grant (# AF/F49620-03-1- 
0120) has led to a range of tools for robust and high resolution signal 
analysis. Broadly, these tools consist of 

(i) new theoretical results for signal analysis, 

(ii) numerical algorithms for high resolution analysis, and 

(iii) quantitative metrics for assessing performance. 

Moreover, under the present grant, application studies have been con- 
ducted in utilizing these techniques in the context of sensor networks, 
ultrasound imaging, and synthetic aperture radar imaging. 

Signal processing is enabling technology for a broad range of appli- 
cations, from medical diagnostics to reconnaissance and communica- 
tions. Advances in signal analysis techniques often have an immediate 
impact on the state-of-the art in such application areas. The focus of 
the research has been an apparent need for robust, flexible, and high 
resolution analysis tools. The hallmark of our approach has been the 
development of algorithms with a built-in ability to focus in on partic- 
ular futures of recorded signals. 

The approach we initiated has undergone several phases already. 
Early work, in collaboration with Professors C.I. Byrnes and A. Lindquist, 
produced a method and apparatus for a Tunable High-REsolution spec- 
tral Estimator (U.S. patent No. 6,400,310) nicknamed THREE, which 
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has been especially suitable for time-series analysis and speech anal- 
ysis. A number of specialized algorithms spawned from this. These 
algorithms allow integrating data from a variety of sensors with ar- 
bitrary geometry and originating from multivariable time-series. The 
ability to deal with arbitrary sensor geometries and, at the same time, 
to ensure theoretical performance bounds, represents a quantum jump 
in the state-of-the art. 

The signal analysis tools that we have developeded are intended 
to separate frequency components, identify deterministic components 
from random ones, and to detect long range vs. short range interac- 
tions. The components obtained in such an analysis stage, help identify 
a wide range of underlying physical causes, and dynamical dependen- 
cies. A particular advantage of these new methods is that they have 
a built-in mechanism for taking into account prior information about 
the processes under consideration. On the application side, we have 
explored the relevance of these techniques in two main areas. We con- 
ducted case studies focusing on measuring the temperature of (arti- 
ficial) tissue in a non-invasive manner by analysing ultrasound echo. 
The purpose of such "non-invasive sensing" is to provide reliable mea- 
surement of tissue temperature for computer guided tumor ablation 
and therapy [31]. The results have been very encouraging and sub- 
stantially better than earlier state-of-the art. We have also explored 
the use of such high resolution techniques in synthetic apperture radar 
(SAR) with similar results. 

A most significant breakthrough has been a theory for analyzing and 
integrating data from distributed sensor arrays (e.g., see [9]). Interest- 
ingly, this advancement shares the same basic framework with our tech- 
niques for high resolution spectral analysis. In either, we seek a power 
distribution which is consistent with measurements. Pre-conditioning 
of the data may be taken into account, and post-processing can be tai- 
lored to the task at hand based on prior information (e.g., accounting 
for known portion of the power and tuning for high resolution in a 
particular frequency or spatial sector). Identifying power distributions 
consistently with given measurements is treated as an inverse prob- 
lem. The family of such distributions is suitably parametrized, and 
the size of the family represents a measure of uncertainty. When data 
are collected via a spatially scattered collection of sensors, the relevant 
imaging and sensor analysis problems are cast as moment problems. 
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Typically, data and measurements represent radar/sonar echo, a 
speech recording, etc., and may be sampled non-uniformly with gaps 
on the record. Our computational theory allows solving the most gen- 
eral such multivariable and multidimensional moment problems by pro- 
viding representative spectra, as well as a complete description of all 
spectra which are consistent with the data. Besides the relevance of 
these techniques in analysis, they also impact on the design and optimal 
distribution of sensors. 

The publications listed below document our research and accom- 
plishments. Our joint work with C. Byrnes and A. Lindquist [3], where 
foundations of our framework were first laid out, received the G.S. Ax- 
elby outstanding paper award from the IEEE Control Systems Society 
in 2003, and a U.S. patent [41] which was based on this and subsequent 
work. We mention that earlier joint work of the PI with Professor M.C. 
Smith (University of Cambridge) on metrics for robust control analysis 
and synthesis, work which was also supported by AFOSR, received the 
G.S. Axelby outstanding paper award twice. First in 1992, for a robust 
control theory and design tools for linear systems, and then again in 
1999 for robust control theory and tools for nonlinear systems. The 
recent work under the current grant, on robust high resolution spectral 
analysis, can be broadly classified into the following categories with 
some overlaps. 

2.1     High resolution analysis and applications 

Publications: [31, 36, 32, 11, 22, 6, 23, 8, 13, 14, 15, 34, 30, 17, 18, 40, 37] 

Our framework for spectral analysis was initiated in [19, 20, 21]. It 
was influenced by earlier joint collaborative work of the PI with Chris 
Byrnes and Anders Lindquist in [3, 4]. This also led to a U.S. patent 
[41] on tunable high-resolution spectral estimators. Publication [32] 
explores basic tradeoffs between resolution and robustness of such es- 
timators, and outlines how to tune these for optimal performance. In 
[36, 37, 40, 35] we explain advantages of the new techniques and in- 
sight in antenna arrays, SAR, and in multi-rate signal processing. In 
[31, 34] we demonstrated the use of our new methods in non-invasive 
ultrasound temperature sensing. This work is on-going. The goal is 
to use non-invasive sensing for computer controlled tumor ablation. In 
[13, 14, 15] we pointed out that a key step in spectral analysis, the step 
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of estimating statistics, may not provide data which are consistent with 
underlying dynamics. In this case, resolution can be dramatically im- 
proved if care is taken to adjust the statistics so as to conform with 
known underlying dynamics (in a way which extends the celebrated 
contribution by Burg [27] to the case of multivariable processes). Pub- 
lications [30, 23, 11, 22, 18] deal with assessing the level of spectral 
uncertainty, and then presenting canonical decompositions for use in 
spectral analysis problems. 

2.2 Multi-variable & multi-dimensional moments 

Publications:  [9, 11, 22, 8, 12, 13, 14, 17] 

In these publications we solve the most general multi-variable and 
multi-dimensional moment problem. In a very general sense, the data 
for modeling, identification, spectral analysis, etc. amount to moment 
constraints on a power density function which is possibly multivariable 
(matrix-valued) and multidimensional (spatio-temporal). Our theory 
in [9] gives a way to determine and parametrize all consistent distribu- 
tions. Publications [22, 11] develop further a very important "bound- 
ary" case of singular data sets. Publications [12, 13, 14] are mostly on 
a static but multivariable version of such problems and corresponding 
numerical issues. 

The importance of this stems from the fact that it encompasses the 
most general situation where data is available from a distributed array 
of sensors. The sensors do not need to collect the data in synchro- 
nized manner. Also the data may originate in a spacio-temporal and 
multi-variable distribution of scattered power. Our framework allows 
for a computational theory for integrating data collected by such dis- 
tributed arrays of sensors for the purpose of identifying the distribution 
of power and properties of the underlying scattering field. Such prob- 
lems are encountered in a wide range of applications which includes 
radar technology, ultrasound imaging, and others. 

2.3 Analytic interpolation with degree constraint 

Publications:  [5, 22, 8, 9, 17] 

The problem of analytic interpolation with degree constraint was in- 
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troduced in the Pi's work in the early 1980's (1983 Ph.D. thesis). Im- 
portant contributions by Chris Byrnes and Anders Lindquist re-kindled 
interest in the problem, and in the joint work (together with A. Megret- 
ski) [5] a rather complete theory for the (scalar version) of the problem 
was finally completed. Interest in this problem stems from applica- 
tions in control and signal processing. The theory in [22, 8, 9, 17] is 
relevant in addressing the multivariable version of the problem (which 
is essential for multivariable control applications). Work on the multi- 
variable problem is still in progress along the lines of [9] and will appear 
shortly. This work entails a complete parametrization of all solutions 
to a multivariable Nehari type of interpolation problem, which have a 
Macmillan degree less than or equal to the generic degree prescribed 
by the problem data. 

2.4 Feedback control design 

Publications:  [44, 10, 16, 39] 

Reference [44] deals with the numerical solution of certain optimal peri- 
odic control problems. These arose in studies in periodic drug delivery 
and in chemical engineering applications. References [10, 16, 39] deal 
with applying our theory on interpolation with degree constraint to 
controller design with dimensionality constraints. Work in [10] com- 
pares our framework for controller design with degree constraints to an 
alternative which is based on solving linear matrix inequalities. 

2.5 Metrics for spectral uncertainty- 

Publications: [24, 25] 

Despite the centrality of spectral analysis in a wide range of scientific 
disciplines, no agreement exists as to what an appropriate distance 
measure between spectral density functions is. Some of the key con- 
tenders have been the Bregman distances, the Kullback-Leibler-von 
Neumann distance, the Itakura-Saito distance, and finally Battachar- 
rya and Mahalanobis-type variants. Certain of these distances have a 
definite relevance when used to discriminate between two probability 
density functions. Yet none has any meaningful interpretation when 
applied to power spectral density functions. 
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In fact, surprisingly, the question on how to quantify uncertainty 
in spectral analysis has received little attention in the past. The de- 
velopment of suitable metrics for quantifying distances between power 
spectra has been a focus in our research. These metrics are essentials 
tool for assessing uncertainty, robustness, and performance of signal 
analysis techniques. Our formalism mimics ideas from Information ge- 
ometry which was invented so as to quantify uncertainty in statistical 
inference. Information geometry endows probability distributions with 
a natural (Fisher infromation) metric. We similarly endow density 
functions with a metric with a natural interpretation based on pre- 
diction theory We developed new distance measure between power 
spectral densities [24, 25]. These metrics are the first with any clear 
interpretation. The relevant notion of distance quantifies differences 
in predictability properties between respective random processes. It 
can be used to detect subtle changes in the spectral content of nonsta- 
tionary signals and, thereby, effectively identify drifts, transitions, and 
events. 
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Technical Highlights 

The subject of our research relates to modeling and identification of 
multivariable and multidimensional time-series with a focus on sensor 
arrays. The focus has been an apparent need for robust, flexible, and 
high resolution analysis tools. The hallmark of our approach has been 
the development of algorithms with a built-in ability to focus in on par- 
ticular futures of recorded signals. The intended applications include 
identification, array signal processing, and data mining. 

In Section 3.1, we overview methods for multivariable spectral anal- 
ysis based on generalized statistics. These inherit superior resolution 
properties from utilizing generalized statistics and represent a gener- 
alization of our earlier Tunable High REsolution Estimator (THREE) 
reported in [4]. We discuss additive decompositions of covariance statis- 
tics and their significance in identification, and outline basic theory 
which underlies our advances on high resolution identification and spec- 
tral analysis [3, 4, 6, 7, 8, 9, 19, 21, 22, 31, 32]. 

In the backdrop of robust control and of the gap metric (introduced 
by Zames and El-Sakkary and developed during the past decade by 
the PI in collaboration with M.C. Smith), the PI seeks quantitative 
measures of signal affinity as well as objective distances between signal 
statistics. Traditional vector metrics (e.g., Euclidean) are not satisfac- 
tory as distances between statistical quantities since they do not ac- 
knowledge their structure as a positive cone. Alternative entropy-based 
metrics are sought and a natural intrinsic metric between spectral den- 
sity functions is discussed in Section 3.2. The purpose is to quantify 
uncertainty and resolution in signal analysis, to assess robustness of 
signal processing algorithms, and to facilitate correlation analysis in 

13 
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large databases. 
Part of the motivation and impetus for the research has been pro- 

vided by our recent collaborative work on two fronts: Non-invasive 
sensing for medical applications, and distributed sensing and control for 
vibration isolation. Measuring heart conditions such as mitral regurgi- 
tation or measuring temperature inside tissue for purposes of computer 
guided tumor ablation or therapy, in a non-invasive manner, requires 
exceedingly high resolution and robustness (see e.g., [31]). Another 
ubiquitous situation arises when a large collection of signals becomes 
available (e.g., via a distributed sensor array or in a large database) 
and fast and high resolution correlation analysis is sought to identify 
affinity, coherence, and relevance of various signals. Such is the task 
when we seek to identify sources of excitations in distributed media, the 
origin and pathway of disturbances in spatial structures, for the pur- 
poses of modeling/prediction/control of distributed physical systems 
—a model application being the disturbance isolation of a targeting 
system (e.g., a laser) using feedback from measurements collected us- 
ing a distributed sensor array. Similar tasks are pertinent in signal 
classification and system identification, in general. 

On the technical side, the research reported herein has led to re- 
liable methods for high resolution spectral analysis of multivariable 
processes, as well as to distance measures for quantitative assessment 
of uncertainty and of resolution in signal analysis applications. In the 
last section 3.3, as an example, we outline certain Matlab-based rou- 
tines and their use for high resolution analysis of scalar time-series. 
There routines are available the Pi's website. 

3.1    Generalized statistics & resolution 

Our first step is to explain what is meant by "generalized statistics" and 
why is this concept important. Consider a stationary random process 
{life} with zero mean and power spectral density fu(0). The autocor- 
relation samples Rk — £{utU(+k} of Uk are the Fourier coefficients of 

Rk = ^[ e-]6U(e)de, for k = 0, ±1, ±2,..., 
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R-k = •#£, while fu(8) is given by the Fourier series Y^kL-oo Rk^~ike• 
Occasionally, {t^} is not directly observable in which case one may 
not be able to estimate autocorrelation samples. For instance, if xk = 
axk-i + Uk — buk-i is a first-order system ( — 1 < a < 1) and if only 
{xk} is available, then it is natural to estimate statistics of {xk} in- 
stead. These statistics represent moments of fu(9) with respect to 
kernel functions which differ from e*   .   For example, the variance of 

£{4} — r \ ojO 

eJ6 
2fu{d)dd 

is a moment of fu(9) with respect to the kernel function \(ej6 -b)/(e^0 — 
a)\2. Such filtering may inherently be part of a measuring apparatus, 
but it may also be introduced to improve S/R and resolution as dis- 
cussed in e.g, [32, 20]. 

Thus, in general, it is customary to refer to any moments of fu(6) 
as generalized statistics of the underlying random process. Not all such 
moments originate in ordinary time-filtering, and not all correspond to 
rational kernel functions. In fact, a most challenging and very com- 
mon situation arises when the indexing in {uk} refers to space and 
not time. Take for instance an array of sensors with three elements, 
linearly spaced at distances 1 and y/2 wavelengths from one another, 
and assume that (monochromatic) planar waves, originating from afar, 
impinge upon the array. This is exemplified in Figure 3.1.  Assuming 

EQ 

o 

Ei 

o 
E2 

Figure 3.1: Non-cquispaccd sensor array 

that the sensors are sensitive to disturbances originating over one side 
of the array, with sensitivity independent of direction, the signal at the 
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£th sensor is typically represented as a superposition 

ue(t) =  f  A{e)ej{u't-pXeCOs{e)+^e))de, 
Jo 

of waves arising from all spatial directions 6 6 [0, ir], where u> is the an- 
gular time-frequency (as opposed to "spatial"), X{ the distance between 
the £th and the Oth sensor, p the wavenumber, and A(0) the amplitude 
and <p{6) a random phase of the ^-component. Typically, the phase 
(f)(8) for various values of 8 are uncorrelated. The term px(Cos(9) in 
the exponent accounts for the phase difference between reception at 
different sensors. For simplicity we assume that p = 1 in appropriate 
units. Correlating the sensor outputs we obtain 

Rk = E{ueiue2} :=  f V'fccos<e>f(8)d8 (3.1) 
Jo 

where f(8) = \A(8)\'2 now represents power density, and k = l\—l2 with 
t\ > £2 and belonging to {0,1, \/2 + 1} (k is kept as a "non-integer'' 
index in Rk from mnemonic purposes). Thus, 

fc€2r:={0,l,\/2,V2 + l}. (3.2) 

The only significance of our selection of distances between sensors, that 
gave rise to the rather unusual indexing set (3.2), is to underscore that 
there is no algebraic dependence between the kernel functions 

^   e-jcos(6)   e-jV2cos(6)   e-j(V2+l)cos(6) 

Even more challenging situations arise when (i) the kernel functions 
represent Green's functions or transfer functions in a general spatial 
domain, e.g., in case sensors are scattered in a random pattern in R3, 
and (ii) when statistics are obtained from observations which are non- 
equispaced in time (also, random sampling). 

Let us revisit the situation of ordinary autocorrelation samples. 
Given a finite observation record {u0, ... , uN} we typically estimate 
a finite sequence {RQ, R\, ..., Rn} (e.g., via sample averaging). The 
Toeplitz matrix 

RQ     R-I     ...       R-n 

Ri     Ro     ...   #_(n_i) 
Tn:=        . \ 

Rn     Rn-1      • • • Ro 
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is nonnegative definite since fu(0) > 0 and since 

Tn = ±-J*G(e>e)fu(e)G(e>6yde, 

where 
G{e]i)) = [1   e^o   ...   e^e ]', 

and '"" denotes transpose while "*" denotes complex conjugate trans- 
pose. The (column) "Fourier vector" G(eJ°) is referred to as a Fourier 
vector, and as 9 varies, it defines a curve in a complex space which is 
known as the "array manifold". Non-negativity of Tn turns out to be 
sufficient for the existence of a power spectral density which is con- 
sistent with the moments in Tn. There is a rather rich theory on how 
much Tn is telling us about the power spectum, and how to reconstruct 
representative spectra (maximum-entropy, etc.) which are consistent 
with the partial sequence of autocorrelation statistics. This goes back 
to the theory of the trigonometric moment problem and of orthogonal 
polynomials, and forms the basis of the so-called "modern nonlinear 
spectral analysis methods" [27]. An alternative way to reconstruct 
/„(#), based on Tn, is the periodogram/correlogram 

f{6)   :=   -L-G(e>eyTnG(e?B). (3.3) 
n + 1 

This is an approximation of fu(9) — see [38], as is the Capon (or 
maximum-likelihood) estimate of fu(9) given by 

1(0) •= ^y (G(e^)*(Tn)-
1G(^))-1. (3.4) 

Weighted versions of the autocorrelation coefficients can be used in 
order to trade-off resolution with robustness. I.e., using various win- 
dowing functions Wk (Hamming, Kaiser, etc.) one may replace Rh with 
RkWk in the above. These ideas are classical, were extensively studied 
decades ago, and remain the workhorse of signal analysis applications 
to this day. Yet, it is a striking fact that a multivariable version of 
such successful tools has largely been absent (i.e., a periodogram-like 
method for inherently multivariable processes). In our software tools 
we generalize and take advantage of similar ideas in the context of 
generalized statistics, replacing the state covariance R by Hadamard 
products with suitable windowing matrices. 
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A further striking fact is that the corresponding issues when G(ej6) 
is not an ordinary Fourier vector, have not been studied with the excep- 
tion of the somewhat ad-hoc beamspace techniques. The recent work 
by the PI (see [9, 8, 40]) has addressed such issues on a firm theoreti- 
cal basis. For instance, returning to the example of the non-equispace 
antenna array in Figure 3.1 and Rk for k € J in (3.1), it is important 
to determine whether estimated values for the moments are consistent 
with the geometry of the array, and if so to characterize all consistent 
power spectra. In the present situation (packaging Rks in (3.1) into a 
matrix and setting r = cos(0)) the nonnegativity of 

/? 
< 

1 
/(cos-Hr)) 

[1 ojr js/2i ]dr 

which, in the obvious indexing turns out to be 

R = 
Ro      RI    Rj2+X 

_R\      RQ     R^ (3.5) 

is only a necessary condition. The fact that it is not sufficient (see e.g., 
[7, page 786]) motivated our recent work and led to a rather complete 
answer/theory documented in [9, 8]. 

We now highlight some of the important findings. First we deal 
with the case where the "Fourier vector" G(ej0) is replaced by the 
transfer function of a linear, time-invariant, discrete-time (input-to- 
state) dynamical system 

xk = Axk-i + Buk, with k € Z, 

xjt being the state-vector and A, B matrices in Knxn and Rnxm, re- 
spectively. Then the input-to-state transfer function G(ejd) = (I - 
ejeA)~1B is matricial and the random process {uk} vectorial. If uk is 
white noise (with covariance matrix Q > 0), then it is well known and 
easy to see that the state covariance 

R := £{xkx'k} 

satisfies the Lyapunov equation R — ARA' = BQB'. However, surpris- 
ingly, the case where uk is not white was dealt only recently (under 
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AFOSR support by the PI in [20, 21]). The correspondence between 
R,A,B and input power spectra fu is detailed in [20, 21, 22]. Briefly, 
a state covariance for the above system satisfies 

rank R-ARA*   B 
B* 0 = rank 

0     B 
B*    0 (3.6) 

where 0 is the zero matrix of appropriate dimension. An alternative 
characterization amounts to the solvability of 

R - ARA' = BH' + HB' 

for a matrix H which is of the same size as B. Conversely, provided 
R satisfies either of the above two equivalent conditions, and provided 
it is non-negative definite, there exists a power spectrum for a candi- 
date input that gives rise to such state-statistics (this was shown in 
[20]). The parametrization of all consistent power spectra and related 
computational issues has been the subject of [20, 21, 22]. The relevant 
realization theory for matricial power spectral densities amounts to 
analytic interpolation with positive-real matricial functions and thus, 
echoes a lot of the usual tools and constructions in i/oo-control theory. 

The motivation for considering state-covariances of linear systems, 
was to develop a theory for high resolution spectral analysis following 
[3, 4, 19]. Our joint work with C. Byrnes and A. Lindquist led to a U.S. 
patent [41]. The main idea in [3] arose from the simple observation that 
the autocorrelation samples of a time-series correspond to interpolation 
conditions for a positive-real function related to the power spectrum, 
at the origin. In some detail, if Rk — £{u(Ue+k} as before, then the 
power spectral density fu(9) is simply the real part of the positive real 
function 

1     n + 7pJe 

F(*) = ;r/   v^—df(0)de = R0 + 2R1z + 2R2z
2.... 

2TT /_, 1 - z&° 

Thus, the R^s relate to the value of F(z) and its derivatives at the 
origin. This fact generalizes to cases where the statistics are taken at 
the state or output of any dynamical system. For instance, if Xk = 
aXk-i + Uk is a first-order system and — 1 < a < 1 then 

S{4) = ^ f" j^—sf(B)dB = r-^gFia) 
ZTT J_x le-7" — a\z 1 — az 
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from which we readily obtain an interpolation constraint on F(z) at 
z = a. In general, intuitively, superior resolution is achieved by select- 
ing data-dependent interpolation constraints at points proximal to the 
unit-disc sector of a targeted frequency band. In general, the filter may 
reflect dynamics of sensors but it can also be virtual, focusing on the fre- 
quency range of interest. Given interpolation constraints for the power 
spectrum, a whole range of tools of the nonlinear methods [27] extends 
to this framework (encompassing so-called beamspace techniques in an- 
tenna arrays). The design of input-to-state filters and relevant tradeoffs 
between robustness and resolution have been addressed in [32], and is 
part of continuing research and development of algorithms. 

We now highlight the case where the "Fourier vector" is replaced 
by a Green's/transfer function G(eje) with no apparent shift structure. 
Turning once more to the non-equispaced antenna array in Figure 3.1, 
we seek a power density function f(9) consistent with the statistics 
which is closest to a "prior" /prior(#) in the sense of, say, a Kullback- 
Leibler distance 

S(/| |/prior)  := "^ j_    (/prior log(/prior) - /prior log(/)) d9. 

The minimizing solution can be written in closed form 

f(Q) — /prior (y) 

Re{\0G(ei<>)} 

where A0 denotes a (row) vector of Lagrange multipliers for the min- 
imization problem. These multipliers can be easily computed so that 
f(0) abides by the given statistics, provided of course that the statis- 
tics are consistent with the structure of G(eie). A homotopy method 
was proposed in [8, 9] leading to a differential equation for A(T) in a 
homotopy variable r. If the statistics are consistent with the structure 
of G(eje), then A(r) —> A0 as r —> 1, otherwise A(T) escapes to oo. The 
role of /pHor is to introduce prior information, but can also be used to 
parametrize all solutions to the moment problem, since choices of /prior 

lead to the complete set of /'s such that 

R = ±  rG(e>e)f(e)G(e>eyd6. (3.7) 
^   J-lt 

We would like to emphasize that the theory in [9] applies to the case 
of matricial power density functions fu (e.g., spectral density functions 
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of multi-variable processes), as well as to cases where the support is 
multi-dimensional (e.g., space-time distributions, or 8 6 R* with £ > 1 
in general) in which case the integrals are interpreted accordingly. 

The observation that singularities in a covariance matrix reveal de- 
terministic linear dependences between observed quantities, forms the 
basis of a wide range of techniques, from Gauss' least squares, to prin- 
cipal component analysis (PCA, GPCA), to modern subspace methods 
in time-series analysis. This observation suggests that a decomposition 
of covariance data into "signal -I- noise," in accordance with a suitable 
postulate, leads to identification of such deterministic dependences. 

We first discuss the implications of the observation in time-series 
analysis. Here, traditionally, one seeks a white-noise component of 
maximal variance which is consistent with estimated statistics. For in- 
stance, if Tn represents the (n+1) x (n +1) Toeplitz matrix formed out 
of the first n + 1 autocorrelation samples of a scalar random process, 
the minimal eigenvalue Amin(Tn) of Tn represents the maximal power 
of white noise which is consistent with this autocorrelation data. Fur- 
thermore, Tn — Amin(T„)7 is singular and corresponds to a determin- 
istic random process made up of at most n-complex sinusoidal com- 
ponents. This fact (albeit in a different language) was already known 
to Caratheodory and Fejer in the early part of the 20th century, and 
was used by them to show that positivity of Tn is sufficient for the 
solution of the relevant trigonometric moment problem. It was recog- 
nized by Pisarenko in the 1960's for its relevance in signal analysis and 
this fact forms the basis of certain widely used high resolution methods 
for spectral analysis known as MUSIC (Multiple Signal Classification) 
and ESPRIT (Estimation of Parameters by Rotational Invariant Tech- 
niques) —see [7, 19, 38]. 

Despite being widely used, no multivariable generalization of the 
Caratheodory-Fejer-Pisarenko decomposition had been devised, until 
the Pi's recent work [22] under the current AFOSR grant. In [22] we 
have shown that a direct multivariable analog is not possible. More 
specifically, we have shown that after we account for white noise of 
maximal power consistent with the data, the remaining variance can- 
not be accounted for by pure sinusoids (i.e., by a purely deterministic 
signal). Yet, often the "white noise" hypothesis is suspect. Further- 
more, in sensor arrays the hypothesis of mutual couplings and local 
effect of scatterers suggests the presence of noise with short range 
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correlation structure (e.g., the analog of say, MA{\) or MA(2) in 
time-series). In an effort to address such practical issues, in [22, 11] we 
develop canonical decompositions of second order statistics accounting 
for noise with short-range correlations. Such problems are naturally 
formulated as semi-definite programs and efficiently solved with exist- 
ing software. 

We wish to acknowledge the influence of early critique by R.E. 
Kalman, in the context of econometric "error-in-variables" models, 
on this line of research. Indeed, ordinary least-squares often lead to 
ill-posed solutions (as most clearly demonstrated in the econometric 
Frisch-Reiers/61 problem [29]). The motivation behind [22] has been to 
address the case where information is available regarding noise statis- 
tics (typified by mutual couplings and interference in sensor arrays) and 
employ the system theoretic maxim that a maximal set of dependences 
is to be sought. The essence of our research has been to decompose 
second order statistics into a sum which reflects noisy and determin- 
istic components. Accordingly, the decomposition is canonical and/or 
minimal in a suitable sense (see [22]). The formalism in [22] applies to 
the setting of distributed sensor arrays. 

3.2    Distances between power spectra 

Despite the centrality of spectral analysis in a wide range of scientific 
disciplines, no agreement exists as to what an appropriate distance 
measure between spectral density functions is. Some of the key con- 
tenders have been the Bregman distances, the Kullback-Leibler-von 
Neumann distance, the Itakura-Saito distance, and finally Battachar- 
rya and Mahalanobis-type variants. Certain of these distances have a 
definite relevance when used to discriminate between two probability 
density functions. Yet none has any meaningful interpretation when 
applied to power spectra. 

We present a new distance measure between power spectral densities 
and in fact, a (pseudo-) metric, which has a clear interpretation rooted 
in prediction theory. This is based on [24, 25]. 

Our starting point is to consider the degradation of the variance of 
the prediction error when the design of the predictor is based on the 
wrong choice among two alternatives. More specifically, let f\,fi rep- 
resent spectral density functions of discrete-time zero-mean stochastic 
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processes uft(k) (» 6 {1,2} and keZ), and let pfi{£) (^ € {1,2,3,...}) 
represent values for the coefficients that minimize the linear prediction 
error variance 

£{M0) -f>(£H(-*)l2}- 

Thus, the optimal set of coefficients depends on the power spectral 
density function of the process, a fact which is acknowledged by the 
subscript in the notation p^ (£). It is reasonable to consider as a dis- 
tance between /i and /2 the degradation of predictive error variance 
when the coefficients p(£) are selected assuming one of the two, and 
then used to predict a stochastic process corresponding to the other 
spectral density function. The ratio of the "degraded" predictive error 
variance over the optimal error variance 

n(f n.   g{l"/1(Q)-E£iP*('K1(-/)|
a} 

PUuj2> •    £{\uh(0) - EfeiP/.CWf-W} 

turns out to be equal to the ratio of the arithmetic over the geomet- 
ric means of the fraction of the two spectral density functions, see 
[24, 25]. Then, the logarithm logp(/i,/2) =: <5(/i,/2) represents a 
measure of dissimilarity between the "shapes" of f\ and /a and, can be 
viewed, as analogous to "divergences" of Information Theory (such as 
the Kullback-Leibler relative entropy). Indeed, 

^u=^{Tj_,mT«)-rJj°z{m))^ <38) 

vanishes only when /1//2 is constant on [—7r,7r] and is positive other- 
wise. Considering the distance <5(/, / + A) between a nominal power 
spectral density / and a perturbations / + A, eliminating cubic terms 
and beyond, leads (modulo a scaling factor of 2) to the Riemannian 
pseudo-metric 

on density functions. It was a pleasant surprise that, geodesic paths 
fT (T 6 [0,1]) connecting spectral densities /o,/i and having minimal 

length Jo1 y/5{fT,fr+dT) = ^ \/9fr(^)dT, can be explicitly computed 
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[24]. These turn out to be logarithmic intervals (also referred to as 
exponential families), 

MO) = fl0-
T(e)f{{6) for r e [0,1], (3.10) 

between the two extreme points. Furthermore, the length along such 
geodesies can be explicitly computed in terms of end points 

,,, f,     /i (7,   fi(0)\2de   fir.   fi(e)de\2 

(3.11) 
I.e., it is the "standard-deviation" of the difference log(/i) - log(/2). 
This is a pseudo-metric. The "pseudo" refers only to the fact that it 
does not account for constant multiplicative factors. 

It is rather interesting to point out that the / H-» log(/) maps power 
spectral densities onto a Euclidean space where quadratic norms such 
as (3.11) have a clear interpretation. In fact, with respect to the Rie- 
mannian metric (3.9) that we introduced, the space has zero curvature 
since geodesies are "logarithmic" straight lines. From this vantage 
point one may also consider alternative norms such as || log(4L)||2, etc. 
though without yet a natural interpretation. 

It is interesting to compare the differential structure on power spec- 
tral density functions that we introduced above with the corresponding 
differential structure of "Information Geometry." In Information Ge- 
ometry f(6) corresponds to a probability density on [—7r, IT] and the 
natural Riemannian metric is the Fisher information metric is (cf. [1, 
page 28]) which can be expressed in our framework as 

(with £ flj(0)g = 1 and 4 £*(*)£ - 0 since both /, / +A need 
to be probability densities). Direct comparison reveals that the powers 
of f(9) in (3.9) and (3.12) are different. Thus, it is curious and worth 
underscoring that in either differential structure, geodesies and geodesic 
lengths can be computed. For completeness we note that Information 
Geometry is a vast subject, originating in the work of Rao, Amari, 
Cencov and others, with a large following directed towards analogous 
geometric interpretations in Quantum theory.   The starting point of 
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Information Geometry may be considered, in a way analogous to our 
development, to be the degradation of coding efficiency when the wrong 
choice between two probability distributions fx and /2 is assumed. This 
degradation is precisely the Kullback-Leibler distance between the two, 
which can then give rise to the Riemannian metric <?Fisher,/(A), in a way 
analogous to our construction of <?/(A) from 6(-, •). 

The idea to employ the degradation of performance with regard 
to specific tasks when the wrong choice between alternatives is used 
extends easily to a variety of contexts, and should be useful for that 
purpose as well. An alternative paradigm can be built on smoothing 
problems which we take up next but with a different goal in mind, 
namely, to provide an alternative to the maximum entropy principle. 

The maximum entropy principle, as it is often invoked in time-series 
analysis ([28]), suggests the selection of a power spectrum which is con- 
sistent with autocorrelation data and corresponds to a random process 
least predictable from past observations. While this is a reasonable dic- 
tum when one is interested in prediction, it is often used regardless of 
the specific intent for the sought spectrum. The point we wish to raise 
becomes apparent when considering the relevance of another dictum, 
equally pertinent, albeit based on smoothing instead of prediction. 

The variance £{\u(0) - Y^eL\Pf{^)u(~^)l2} °f *ne optimal one-step- 
ahead (linear) predictor u(0|past) := Y^iPf(^)u(~^) ^ the geometric 
mean (see [26, page 183]) of /, i.e., 

£{|u(0) - u(0|past)|2} = mo,/ := exp (± J   log (f(0)) d6 

This is the content of the celebrated Kolmogorov-Szego theorem. The 
entropy rate [27] is then defined as the negative integral of the logarithm 
of / (i.e., as - J\og(f(9))d9). The notation m0,/, taken from [2, page 
23] for the geometric mean, is sought to contrast with the expression 
for the variance of the error 

£{\u(0) - u(0|past + future)|2} = m_i,, := (^- f   f(eylde) 

for the optimal smoothing filter u(0|past + future) := X^o Qf(?)u(~?)- 
This expression has been derived in [23] where it was also noted that 
it represents the harmonic mean of /. (Naturally, the harmonic mean 
is always < to the geometric mean, since smoothing uses more data.) 



26 CHAPTER 3.   TECHNICAL HIGHLIGHTS 

Applications abound where records need to be interpolated, or where 
the indexing of data collected via a sensor array represents spatial 
ordering and not time ordering. In all such applications there is no 
natural "time-arrow" and, hence, it is imperative that Burg's maximum 
entropy principle is re-evaluated. 

Thus, in the context of time series analysis, both Burg's "pre- 
dictive entropy" - J\og(f(8))d6 and the "smoothing entropy" 
J f(d)~1d6 derived in [23] in work supported by the present grant, 
relate to the level of unpredictability in these two vastly different sit- 
uations. Burg's entropy has been also used as a regularizing func- 
tional in inverse problems (see [9]). But the latter functional can be 
used equally well for similar modeling purposes. For instance, we have 
shown in [23] that extremal spectra with respect to the second choice 
give rise to all-pole Markovian models very much like Burg's maximum 
entropy AR-models, but with one important difference. The poles in 
these models appear with fractional powers. Such fractional powers are 
often encountered in processes with long "memory." 

There is an apparent dichotomy between what a deterministic pro- 
cess is, depending on whether we consider a one-sided or a two-sided 
past. Stationary time-series are said to be deterministic in the Kol- 
mogorov sense if log(/) 0 L\. When we consider determinism with 
respect to a two-sided past, then the corresponding condition weakens 
to /_1 £ Li, because it is only then that the smoothing error is zero. 
This dichotomy raises similar questions for spatial processes and fields. 
This is especially pertinent for applications where space-time data are 
collected via sensor arrays. 

Ever since the early days of statistical mechanics, entropy has been 
a very elusive concept. Yet, from a mathematical and computational 
standpoint, entropy and entropy-rate functionals can be thought of as 
natural barriers of convex sets and positive cones (i.e., of probability 
simplices, or of cones of spectral density functions). They thus can be 
used to identify solutions to ill-posed inverse problems. The history of 
such a viewpoint and of earlier developments can be looked at in the 
Pi's recent publication [9]. Besides the usual entropy functionals intro- 
duced by Shannon-von Neuman, Burg, and Kullback-Leibler-Linblad- 
Leib, discussed in [9] there is a plethora of alternatives, such as the 
Renyi entropy, Tsallis entropy, and more recently generalized means in 
the Pi's work [24]. This last work provides, as discussed earlier, notion 
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of distance which axe compatible with prediction problems and are 
suitable for incorporating uncertainty into correlation measurements 
(in the spirit of [8]). 

3.3    Software 

The following is only a brief overview of representative routines used 
for high resolution spectral analysis of scalar time-series. Additional 
information and Matlab code is provided at 
http://www.ece.umn.edu/users/georgiou/files/rcports.html. 
Please contact the principal investigator at tryphonumn.edu for com- 
ments/input and for subsequent releases of Matlab-based code for high 
resolution spectral analysis. We briefly explain how the software we 
developed can be used to resolve sinusoids —a benchmark problem. 

We begin we time-domain data and some prior information as to the 
frequency range of interest. A filter-bank (one input many outputs) is 
then selected with a bandpass characteristic over the frequency range 
of interest. It consists of a dynamical system 

xk+l = Axk + Buk 

with A, B matrices of size nxn, and nxm respectively. Of course, when 
the time-series uk is scalar, m = 1. The time-series is considered at 
present to have zero mean and is adjusted accordingly. An observation 
record 

{ui,u2,...,uN} 

is typically available, and on the basis of that an estimate of the state- 
covariance 

P = E{xkxk) 

is obtained using routine dlsim_complex.m. Relevant theory and a 
number of routines, e.g., the ones below, 

Name 
sm.m 
me.m 
envlp.m 

usage 
[fr_lines,ampl_lines]=sm(P,A,B,k) 
me_spect=me(P,A,B,omega) 
env=envlp(P,A,B,omega,noiselevel) 

http://www.ece.umn.edu/users/georgiou/files/reports.html. 

can be used for spectral analysis.  The examples above determine (a) 
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spectral lines consistent with the data (sm.m), (b) a candidate spectrum 
for Uk which is consistent with the data P and is of maximal entropy 
(me.m), and (c) an envelop for the amplitude of all consistent with the 
data spectral lines (envlp.m). 

The resolution of the above routines strongly depends on the choice 
of A, B and on the variance of the estimator for the state covariance 
P. Tradeoffs between robustness and resolution using such methods 
is the subject of a Ph.D. thesis by A.Nasiri-Amini (December 2005) 
and discussed in [32]. These provide guidelines for optimal design of 
input-to-state filters and theoretical bounds for the expected gains in 
resolution. 

In practice, as a rule of thumb, there are two parameters that dictate 
the performance of the relevant spectral estimators: the time-constant 
of the input-to-state filter 

G(z) = {zl - A)'1 B 

and its bandpass character. Routines cjordan2.m and mjordan.m can 
be used for designing suitable (A, B) pairs for scalar and vectorial time- 
series, respectively. Typically one needs only specify a (complex) eigen- 
value^) for A and the size of the corresponding Jordan block(s). The 
modulus of the eigenvalues dictates the time-constant of G(z) and the 
phase specifies the band pass character. Finally, the pair is then nor- 
malized to satisfy 

AA' + BB* = I 

where / is the identity, for numerical reasons. Typically, A can be 
chosen to have one Jordan block (when Ufc is scalar) or as a Kronecker 
product of such a matrix with the identity (as in mjordan.m). 

Routine demol.m exemplifies the performance of the above for an 
academic example of separating two sinusoids in background noise. Be- 
cause of the band-pass character of G(s) and the fact that the frame- 
work relies on the state-covariance of G(s), the performance of all the 
above is impervious to color noise (as long as it is relatively white over 
the passband of G(s)). Yet, in the example we use white noise for 
simplicity. Figure 3.2 displays a typical output. The "true" spectrum 
of the time-series Uk is represented by the red "noise level" and two 
red arrows for the sinusoids at frequencies 1.3 and 1.35 [rad/sec]. The 
subplots on the right represent "zoom-in" of those on the left, focusing 
on a frequency range of interest [1.2,1.5].   The data record contains 
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only 100 points. The fourier-based reconstruction is shown in green in 
subplots (2,1) and, magnified in (2,2). It is apparent that the length 
of the data record, which is very short compared to the separation of 
the two spectral lines, does not permit periodogram based techniques 
to achieve any level of resolution. Our high resolutions methods pro- 
vide very accurate spectral estimates. These are shown in blue. In 
particular, estimated spectral lines are indicated with blue arrows and 
are compared with the actual spectral lines of the signal in subplots 
(1,1) and in (1,2). Subplots (3,1) and (3,2) show the computed envelop 
that bounds all power spectra which are consistent with the estimated 
generalized statistics. For comparison we mark the position of the 
actual frequencies of the two sinusoids with thin red lines. Finally, 
subplots (4,1) and (4,2) show the maximum entropy power spectrum 
which is consistent with the generalized statistics. These three alter- 
natives (blue arrows in the first row, and blue envelop and spectrum in 
rows 3 and 4) have been produced with the above routines. They indi- 
cate a remarkable consistency and accuracy which has been confirmed 
by theoretical calculations and error bounds ([32], [31], [33]). 

true spectrum 
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Figure 3.2: Original and reconstructed power spectra 
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